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nlyan(x-X)lz‘“

i f 5:*(x-u)E[1Y|2‘"|x=u]f(u)du

}

"

1,2,...,p, we have

Y LY Xy )

~

[ 18, Ge-w) [ Y20 Xeu) £ ()

a2, 1 n/2
+*0asn-+>w

v, = 012

by assumption. Similar calculations yield

) lgn(xk) l i

~

f(xk)[ § tio (x )/£(x; e

n/2 1 n/2

* 0 as n >~ , and the proof is complete.

sequences, which may be compared with Schuster's Theorem

of kernel type satisfying

(i) ]lK(u)lz'"du < « for some n > 0

(£(x )" f b Sondrete ) E

{|6nI2+n/yn} is a §-function sequence by Lemma 2.1.4.

(

We now give a version of Theorem 2.4.2 for kernel-type §-function

2.4.1.

2.4.4 Theorem. Suppose {8,(x)} = {e k(x/e )} is a §-function sequence
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(ii) [ uk(wdu =0, J u’Kdu <

iy 5
(iii) ne, * » 5 I 0 as n~>®,

Suppose m(x) and f(x) have bounded, continuous 1lst and 2nd derivatives,
lilYIZ*n < » , the distinct points xl,xz,...,xp are continuity points of
s(x) and E[[¥[2*"|X=x] and £(x) > 0, k = 1,...,p. Then
(Zh(xl),...,ZA(xp)) converges in distribution to a multivariate normal

random vector with zero mean vector and identity covariance matrix, where

(ne,) *(m (x) - m(x)

{—oZ(X) / k% (w) du/f (x) ye

Zﬁ(x) =
Proof. We first verify that this s-function sequence satisfies the
conditions of Theorem 2.4.2. Now
% -1 2

a, * / dn(u)du e | ¥(u)du < =

for each n since € #0, | Kz(u)du < », Further,
)

a,/n = (ne,) [ K°(u)du » 0

since ne, + by assumption. Similarly,

& 2+ % 1+ 2+
y, = [ 18| "au = (1/ey) MKW | <

n
for each n, and
Yn/nn/zurllm/2 « (ns:n)-n/2 +>0as n-»>e

by assumption. Thus this type of 6-function sequence satisfies the
requirements of Theorem 2.4.2, and since the remaining regularity condi-

tions of Theorem 2.4.2 are clearly satisfied under the present assumptions,




Er;l / x((x-u)/en)m(u)f(u)du )Z
en‘l / K((x-u)/en)f(u)du m(kj
-1 >
: (nen)"/cn I I\((x-u)/en)n(u)f(u)du T M(X) £ (x)
( ety Mew/e ) ra
: m(x) ,;1 i K((x-u)/en)f(u)du ’
er;j J K((x-u)/en)f(u)du




2.5 Asymptotic Distribution of my.

It is evident that, since ﬁn = m:/f is a sum of independent random
variables, we may apply the Lindeberg-Feller central limit theorem in
much the same way as we did in Theorem 2.4.2 to establish the asymptotic
nomality of (ﬁn(x) - Eﬁn(x))/Var[ﬁn]. We established in (ii) of Lemma

2.3.1 that
Var[m;(x)] ~ (an/n)s(x)f(x)
for appropriate points X. Hence we have
\':n'[rﬁn] ~ (an/n)s(x)/f(x) 5

We therefore have the following theorems, which we state without proof,
since the proofs follow those of Theorems 2.4.2 and 2.4.4 very closely.
The first theorem concerns the asymptotic normality of ﬁh for general

§-function sequences; the second for kernel type §-sequences.

2.5.1 Theorem. Under the conditions of Theorem 2.4.2,
(wn(xl),...,wn(xp)) converges in distribution to a multivariate normal

random vector with zero mean vector and identify covariance matrix, where

ﬁh(x) - lﬁﬁn(x)

(/M (x)/£(x)} 2

W, (x) =

2.5.2 Theorem. Under the conditions of Theorem 2.4.4, (wﬁ(xl)...,wﬁ(xp))
con erges in distribution to a multivariate normmal random vector with zero

mean and identity covariance matrix, where

(ne ) %(m (X) - m(x))
(s(x) [ KPudu/£(0 1

w;(x) =




(2]
~3

2.6 Mean Integrated Square Error.

The mean integrated square error (MISE) Jn of an estimator

-ln
f.(X) =n 12 8, (x-X;)

1

of a density f is defined as
- E - 2
Jn =E [ (fn(x) f(x)) “dx

where dn and f are assumed to be square integrable. Watson and Leadbetter
(1963) show that Jn is minimized for each n if Gn is chosen to have a

Fourier transform ®s expressible as
n

l6¢(t)]?
(1/n) + ((n-1)/n) [¢¢(0) |

o5 () =
n

where ¢f is the Fourier transform of f. (Fourier transforms of square
integrable functions have the usual interpretation here.) For the

regression estimation problem, Watson (1964) considers the error criterion
Jﬁ defined by
n n >
JR*Bjil 6, (x-Xm(x) - ¥ Y,8, (x-X;)]“dx
i=1 i=1
where appropriate assumptions are made on Gn and m to insure the finite-
ness of the integral. Watson states that Jﬁ is minimized for each n if

Gn is chosen so as to have Fourier transform

I¢fm(t)|2
Y + ((-1)/m) o, (817

®
®6 (t) = 1
n

n

where ¢fm is the Fourier transform of fm.

=y

-
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since
A
[ |K'(u)|du < = .
-A

=1
Thus, since IIgn’|| is a bounded sequence by assumption,

-% -1/6 3/2
1% 5 - Yol = 0 (a0 0108 ;™3
and the proof is complete. 0

We may write the sequence of Brownian bridges {Bn} of Theorem

3:2.3 as

(3.2.23) B (x,y) = W (x,y) - xyW (1,1) ,

0 s x,y < 1, where {Wn} is a sequence of independent Wiener processes
on [0,1]2 (Révész (1976)). The next lemma shows that, for our purposes,

the only significant part of (3.2.23) is Wh(x,y).

3.2.6 Lemma. If A4 holds, then
- Y = ;2
IIY2,n \3,nl| op(cn)’

Proof. By definition of Y 7 and Y3 o we have

2,

¥2,n(®) = Y5, 401

= gy (17 %% [ yKED £6y)dxdy|« (W, (1,1
lyl<a n
n
since the Jacobian of the transformation T is f(x,y). Thus

-'li .
€n 11Y2,n = Y3,nll

< W (LD 1] g0 -
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=1 t-x
-« sup e [ YK [£(x,y)dxdy
ustsl lylsa, n
s WD gy ‘
=1 t-x 4
« sup e U [ |yl £0Gy)ay] KED) fax .
usts<l n ;
By A4, ¢
heo) = f Iyl£Cey)dy %
§
is a bounded function and ||g;%|| is a bounded sequence, so that for f
some constant M we have
-y £
n IIYZ,n Y3,n||
=) t-x
< |wn(1,1)lM€n f |K(—€;‘)|dx
= W (1,1M [ [Ku)|du
=0 ) .
b(1) :
i
Thus E
5 - % i
IIYZ’n Y3’n|| e op(en) ‘
and the proof is complete. 0

|
E
§
L]
L
:
{

3.2.7 Lemma. Under the assumptions of Theorem 3.2.1,
& - %
llY4,n YS,nlI Op(En) *

Proof. By definition,




(3.2.20) |y, (0 - Yg ()]

"

el 11 —(7 a AREZ AN

A g (t-ue)
- E;% /Al “EEEIETE” ]li -l}k(U)dW(t-uen)‘
-A

1
By using integration by parts and the assumptions that g; and K are
absolutely continuous, we may bound the integral on the extreme right
hand side of (3.2.24) with

A N 5 &, (t-e )
(3.2.25) en’ _£ W(t-uen) ¥ { 1( —E;T?T_-) l]K(u)}dul

5n(t-Ae )

. }e;5 K@W(t-Ae ) {[ Bo—riy™ e

1% -1}

+

en KC-AW(teae )| w0 A

]

Jl,n(t) * Jz,n(t) o J3’n(t) ,

say. We will show that the supremum over [0,1] of each of these three

tems in 0 (e’), thus completing the proof.

First of all, note

4
€ 119, |
< K(A) sup [W(t-Ac)) | 3 v B g
sup £ sup €_ -
Ost<1 O<ts<1 n gyt

sup |W(t-Ae Wi = 0 1 .
O<sts<1
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Now
. 1 gn(t~Aen) iy
feier B [ NQ) gl
Y
. 108, (t-Ae )] - [g ()17
= sup enl & n - n
0sts<1 18, (t) |

. T 5 4
s ey lle, Ozgglllgn(t-Aen)] - [gy(O17 .

By assumption, Ilg;5|| is a bounded sequence, and by the mean value

theorem,
et gy (t-Ae 1% - [g,(01%
her g (tAe) - g (0] [x, (6,0
n B0 T By X (1A |

where xn(t.A) is between gn(t-Acn) and gn(t). Applying the mean value

theorem to s yields
gn(t-Asn) - gn(t)
= Aeggl (1, (1,0)
where tn(t,A) is between t - Aen and t. Thus

=%
“n ||J2’nl|

‘(t (t,A))
-%sup lﬂn L |

0sts1|x, (t,A) | *

s K(A) sup |W(t)
-Astsl

= Op(l)

since ga is uniformly bounded and &, is bounded away from zero, by

s R S e Y WA

e Ypt—

j
i
4
E

T WP P




67

assumption, and thus

R
H‘lz,n” o Op“n) '

A similar argunent shows that

195 Il = ol,uk) ,

S0 we how consider "l 7
.

Carrying out the differentiation in the integrand of .11 ne we have
’

5
'na"l,n(t)
A r (t-ue )
_ -1 ] Y Sn n’ b
. ‘.“ { W(t-ue n){l\ W) [ ( *E;‘_m.‘_)a 11} du
A r (t-ue ) <% op'(teuc)
i e \X i n n
5 ,{ W(t-ue, JK() ( NG NG )du
5 |Cl,n(t) ' Cl,n(t)l’

Now the non-stochastic tems in the integrand of C, g Are uniformly
“y

say.
We theretore have

bounded in their arguments and in n, by assumption.
A
”"z.n“ < Gy /f\ [W(t-ue, ) |du = 0, (1)

where C, is a constant. For (Tl 5 apply the same argument used in con-
- ’

sidering J, n to conclude that
“y

Al S Gy
n ("“‘g:\’(ﬂ*“] 1] = Cylul

sup €
Ost=1

where (Il is a constant. Then
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A
11€; _|1sC; sup [ |W(t-ue )K'(uwu|du
kB 1 Osts<l -A B

= op(l) ’

and the proof is complete. 0
We now use the results proved thus far in showing that Yo . and
’
Y1 n are sufficiently close to one another.
’

3.2.8 Lemma. Under the assumptions of Theorem 3.2.1,

Yo.n - Yy.nll = 0p((log m™% .

Proof. We must show that

sup {|[g(t))7™* - [g, (0172

le® [ ykEDaz, x,y)
Osts<l : y{f | m =0

i | sa
o -3
0p((log n) 9 .
By the preceding four lemmas and Theorem 3.2.2,
(tog m*[11Y, LIIAGO]* - a)

converges in distribution to some random variable, and is therefore a

Op(l) sequence. Since, by definition,
d, = 0((log m™) ,

we have

1Y) pll = 05((10g WY

and since lm;%ll is a bounded sequence, we have

S ———— S S T e



69

sup | [ ykEXdz, (x,)
Ostsl |g|san n

f = Op((log n)%) %
Thus it suffices to prove

. =
(log m){[g* - g7%|| + 0

as n +» », By the mean value theorem,

-!2 - -li = -y . -3/2
In," =8 1= g ale i ™
where hn is between &, and g. Since & and g are bounded away from zero,
llh;s/zll is a bounded sequence, and since, by A3,
(log n)| g -gl] ~ 0,
:
y the result is proved. 0

Since m;(t) is an asymptotically unbiased estimator of m*(t) =
m(t)f(t), it is natural to seek conditions under which Em;(t) may be

replaced by m*(t) in Theorem 3.2.1. Define the process
(ne)?[(mA(t) - m" ()]
[s(t)E(t)]?

Then we have the following corollary to Theorem 3.2.1.

Yi(t) =

3.2.9 Corollary. Suppose all the conditions of Theorem 3.2.1 hold

and in addition

€, = nS,15<8<1/2,

K satisfies




[ uK(u)du = 0 ,

/ uzK(u)du <
and the function

m*(t) = m(t)£(t) = [ yf(t,y)dy

has bounded, continuous ist and 2nd derivatives. Then the conclusion

of Theorem 3.2.1 holds, with Y, replacing Y-

Proof. According to the remark at the beginning of the proof

of Theorem 3.2.1, it suffices to show

(e - -5
IlYn Ynll Op((log ) S
But

W L * * -k
Y = Yol = ey in-en® 174 .

|lg

By assumption,
NIRRT

and we know that, under the assumptions on m* and K,

[In" - Bl | = 0(e?)

Since
e =nS, &5 15
n ’ ’
then
1
ei(ncn)ﬁ(log n)ls = (nez log n)g +0,
and the proof is complete. 0
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Based on this corollary, we may construct a confidence band for m(t),

0s<tslas follows. Using the asymptotic distribution, we have

y sup|Yp(8)]

P{(Z‘S log n) [W s dn] < C(a)}

where
C(a) = log 2 - log|log (1-a)| .

Inverting the above expression in the usual way, we obtain as a (1-a)x100%

confidence bond for m(t):

(3.2.26) m (t) (nc ) [ r%'g‘ ;ﬁ I;G—C—I(Al——)—— + d“][)\(l()]15 ’
og N

gt sl

3.3 Uniform Consistency of m  and ﬁﬁ.

We saw in Corollary 3.2.9 that the sequence of random variables

" m;(t) - m(t)£(1)
(10g m)*((e,) — | -4
05t51 [s(t)f(t)]

converges in distribution, and is thus a Op(l) sequence. We employ this
fact to show the uniform consistency of m;, and specify a rate of con-

vergence.
3.3.1 Lemma. Under the conditions of Corollary 3.2.9,

(3.3.1) sup lm (t) - m(e)f(t)| = 0 [(log n)g(nc ) Lﬁ]
Ost<l

Proof. By definition,

d = 0((log m* ,




- e ———
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and thus s
ey | a8 MO
ne.)? sup

: " osts1l [s(e)E(E)]®

= Op((log n)'*) + 0((1log n)%)
7 Y
op((log n)* .

Now, using the assumption that g(t) = s(t)f(t) is bounded away from.

zero, the conclusion follows. 0

We now use the preceding lemma to show uniform consistency of m,

and m.

3.3.2 Theorem. Under the conditions of Corollary 3.2.9, we have

= L 3
(3.3.2) [lm - mf| = Op((log n)*(ne)) %) ,

(3:3.3)  [Im - m| = 0 [(log n) *(ne) ) .

Proof. Note that

IA

Hmy - mll o< [1E0 e m - m®) |

where

mlt) = f(t)m(t) .

By assumption, f is bounded away from zero on [0,1], and thus

llf’lll <« . An application of Lemma 3.3.1 thus proves (3.3.2).
For (3.3.3), note
n n

ot - £
[imy < mi] = || |

n
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® ®
llm f m f | mnfn -m fnll

n

=A+B,
say. Now

= IIm, - ml| = 0,[(log n)*(ne,) ™)

by (3.3.2). Further,

ae I7 H =

5
g

(Bickel and Rosenblatt (1973)). Since
*
m
"'( < [Im*]] - [ inf 1£.(t)]]"]
'l?;i - Ost<s1 !
and it is easily verified that ||mn|| 3 |Im*] |, 1nf If | »
0<t

inf [f(t)| > 0, (3.3.3) follows.
Ost<1




4. AN EXAMPLE, FURTHER RESEARCH

As we noted in the introductory chapter, if the density of X is
known, then either the estimator m, or ﬁh may be used to estimate the
regression function. Here we will summarize some results given in
Chapter 2 which relate to the relative performance of m and ﬁh in this
case. We then present an example in which m, and ﬁh are computed from

a set of simulated data.

4.1 The Estimators m_ and ﬁh.

We first note that, according to Theorem 2.3.4, if the density
function of X has, say, an interval for its support and is non-zero at
the endpoints of the interval, then mn is a consistent estimator at the
endpoints, whereas ﬁh is not. The implication of this for finite sample
sizes is that ﬁh is likely to display a bias near the endpoints of the
X variable which m will not have.

According to Theorems 2.4.4 and 2.5.2, under appropriate conditions,
both mn(x) and ﬁh(x) have asymptotic normal distributions with mean
m(x) (for kernel type estimators). However, the sequence of scaling

constants required for unit asymptotic variance differs for the two est-

imators; for mh(x) it is {cz(x) ]l(z(u)du/(m»:n)fl(x)}}5 and for ﬁh(x) it
is {s(x) [ K*(wdu/(ne )£;()}% .  Since

oz(x) = s(x) - mz(x) < s(x) ,

this indicates that ﬁh may display more dispersion about m for finite

sample sizes than m,

A e SR RIS MO O IR . A N SRS TSN A £ S R
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4.2 An Example.

In order to illustrate the behavior of the stimators in one specific
case, we have computed m and ﬁh for a set of artificial data. We have
also computed the approximate confidence intervals given by (3.2.26) for
m, based on ﬁh. The results of the computations are depicted in Figures
1-6, and we have also shown a scatterplot of the data and the true regres-
sion function on each figure. The data consists of n = 200 points

(Xi’Yi) chosen independently with Xi ~ U(-3,2) and

MDAET: PR, e
Y oSS e X0 5 3,

where Zi is a standard normal variable independent of Xi' Thus, for this

data
m(x) = x3/3 + x2 $

All calculations are for kernel type estimators with kernel function given
by a standard normal density function, truncated at + 3 and normalized
SO as to be a probability density.

Figures 1 and 2 show the estimators m, and ﬁh, respectively, with

€, " n %! ang Figures 3 and 4 show m  and ﬁh with slightly less smoothing,

Egs n4. The previously discussed bias of ﬁh is evident at the upper
endpoint on Figures 2 and 4, although m, and ﬁh do not differ by very
much at the lower endpoint. The difference in the asymptotic variances
of m and ﬁh does not manifest itself in this example, although ﬁﬁ in
Figure 4 has a slightly more variable appearance than n in Figure 3.
Figures 5 and 6 show the approximate confidence bands given by

21 4nd c, * n"4, respectively. The

(3.2.26) for a = .1, and 5, n*
confidence bands (3.2.26) are asymptotically valid for any subinterval

of [-3,2]. In practice, however, one should consider these confidence
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bands to be approximately valid only for intervals well within the
support of X, since the earlier remarks on the endpoint bias of ﬁh
apply to the confidence bands also. These confidence bands were

calculated using the true conditional second moment
s(t) =1 + [t3/3 + tZ]Z >

In practice, one would use an estimator of s(t), e.g. the consistent
estimator

s (1) = e ! ¥ YAKR((X,) /e )
>n( ) = (nen 4 i ((t i) e -

4.3 Further Research.

Theorem 3.2.1 was proved for the process

(ne) ¥y (t) - Eaf (1))
Yn(t) S %
[s(EM)]*

It should be possible to carry out a similar program for the process

3 En_(t)
(nep) *[m, (t) - (0 ]
vn(t) N 2 % =
[o"(t)/£f(1)]
A first step in such a proof might be to show the equivalence of V, to

the process

VA(D) = [£(t)/£ () ]V, (¢)

(in the sense of liVn - Vﬁ]l = op((log n)'k)) . Successive approximations,
as in Theorem 3.2.1 would lead eventually to the equivalence of Vﬁ to
the Wiener process of Theorem 3.2.2, and thus to the asymptotic distri-

bution of the maximum absolute deviation of Vn'
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We have not been able to carry out the technical details of the

T TR TR e TR R [ 7L

proof of such a theorem. However, if it were to be proved, one applica-
tion would be a confidence band such as (3.2.26), but based on m

instead of En’ and therefore narrower since m is asymptotically less

variable than ﬁn 2
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Figure 3, The Estimator m With v n~4
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